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Table 1. Area average Nusselt numbers for open area unit 
cell and Re, = 17 000 

1 

HID 
Center Side 

jet jet 
Corner Entire 

jet array 
2 

6.0 62.3 62.7 63.0 62.8 
1.0 83.8 80.6 76.9 79.2 
0.25 84.6 78.3 74.2 77.1 

3 

shape than circular. However, the differences between the 
contours for the center and perimeter jets were not large 
(about 15%). The small differences resulted in small vari- 
ations of less than 12% between the average Nusselt numbers 4 
for the center and perimeter jets. The expected trends in the 
average Nusselt number between the jets were observed, but 
with small variations. Therefore, perimeterjets do differ from 5. 
center jets, but for the conditions studied the differences are 
small. 
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INTRODUCTION 

Non-thermal equilibrium flow of a fluid through a porous 
bed is a subject of permanent interest for analytical and 
numerical investigations. Most of analytical studies of the 
phenomenon were concentrated on the Schumann model of 
a packed bed, obtained in ref. [I]. The model ignores the 
conduction terms in the solid and gas (liquid) phase energy 
equations. Originally the thermal capacity term in the fluid 
phase energy equation was also neglected, but in some further 
studies the effect of the thermal capacity of the fluid was 
included in the analysis. Analytical solutions for the model 
for various input conditions have been obtained in refs. [22 
51. Analysis and comparison of analytical solutions for the 
two-phase model (two energy equations) and the single- 
phase model (local thermal equilibrium assumption, and, as 
a result, one energy equation) are presented in ref. 161. In 
refs. [7-91 a very general set of volume-averaged governing 
equations for non-thermal equilibrium condensing forced 
flow through a latent heat storage porous bed was presented 
and comprehensive numerical investigations of the phenom- 
enon were carried out. 

t Present address : Department of Mechanical Engin- 
eering, The Ohio State University, Columbus, OH 43210, 
U.S.A. 

Distinguished from the previous analytical investigations 
the present analysis is based on solution by the perturbation 
technique of the full energy equations for fluid and solid 
phases, without neglecting any terms in the equations. 

STATEMENT OF THE PROBLEM 

Assumptions made in the analysis are outlined in the fol- 
lowing : 

(1) heat transfer is one-dimensional ; 
(2) thermal, physical, and transport properties are constant; 

and 
(3) fluid phase is incompressible and mass flow rate at every 

cross-section of packed bed is constant. 

Under the assumptions the set of governing equations pre- 
sented in refs. [7-91 can be reduced to two energy equations 
for fluid and solid phases : 

where for the sake of simplicity we write TF = ( Tf)‘, 
T> = (T,)“, pr = (P,)‘, FA = (0: ct = (cph, c, = (c,),, 
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NOMENCLATURE 

Usf specihc surface area common to solid and /z thermal conductivity [W mm’ K-‘1 
fluid phases [m’ mm’] 

f 

dimensionless coordinate 

CP specific heat at constant pressure dimensionless coordinate of the position of 
[J kg-’ Km’] maximum temperature difference between the 

d particle diameter [m] solid and fluid phases 
h ar fluid-to-particle heat transfer coefficient II porosity 

I between solid and fluid phases P density [kg mm’] 
wrn-*Km’] 7 dimensionless time. 

N% fluid/solid Nusselt number 
t time [s] 
T temperature [K] Subscripts 
U velocity of the fluid phase [m s-‘1 b boundary 

WI, w2 constants eff effective property 
X coordinate [m] f fluid (gas or liquid) 
,? coordinate of the position of maximum ,feff effective property for fluid 

temperature difference between the solid and max maximum 
fluid phases [ml. 0 initial 

S solid 
Greek symbols seff effective property for solid. 

P constant 
E dimensionless small parameter 
0 dimensionless temperature, Other symbol 

*CT- T,)I(T,- To) 0 local volume average of a quantity. 

v = (vr). Here () means local volume average of a quantity where OBis a function of coordinate and time, and : 
and Of or 0” means intrinsic phase average for fluid or 
solid phase, respectively [lo]. The specific surface area of the 1 WP,CfYW 
packed bed for the fluid phase according to ref. [l l] is : & = hsfasf (PCMkT+LY)' 

6(1-n) 
(3) 

is, according to assumption (4) a dimensionless small 
a,r = 

d parameter. 

The fluid-to-particle heat transfer coefficient can be esti- 
Now the set of equations (1) and (2) can be written as : 

mated according to correlations, established in ref. [12] : !3+!$Ic$+U(E), (6) 
1 

-=&+d, 
h fs f L% 

(4) 
sf 

where /l = 10 for packed bed particles of spherical form. 
B:=!%+$%il.*!$ (7) 

For a fine structure of a porous bed average particle diam- 
eter d is small, so according to equations (3) and (4) h,p,, where 

takes large values. So for packed beds with small average 
particle diameter we can introduce an additional assump- 

(PCLrr MPC)df w2 _ 

tion : 
w' =nPfcr (k?r+LlfwPfCf 

(4) coefficient hsfasf in the terms of equations (1) and (2), 
Equation (6) was obtained by combining equations (1) 

describing fluid-to-solid heat transfer, is a large 
and (2), and equation (7) is equation (1) in the dimensionless 

parameter. 
form with regard to equation (5). 

To apply perturbation technique to the set of equations 
(1) and (2) we bring them to a dimensionless form. We 
introduce dimensionless variables : ~ SOLUTION OF THE PROBLEM AND 

T- T, (X> 0) 
INVESTIGATION OF THE TEMPERATURE 

Temperature 
@ = T,(O, t) - T,(x, 0) ’ 

DIFFERENCE WAVE 

Consider a semi-infinite porous bed initially at a uniform 

Distance 
PfW 

r=/zaR+> 
temperature, which is suddenly subjected to a step of fluid 
inlet temperature. Initial and boundary conditions for the 
function T, are : 

Time 
T&c, 0) = To T,(O, t) = Tb Z(qt) = 0 

where (PC),~ = llpfct + (1 - Qp.cs. 
We assume that the temperature of the solid phase can be 

represented as : 
In dimensionless variables the conditions are : 

0 =0,+&3* (5) 
@I,([, 0) = 0 Of(0, r) = 1 ao,@o,T) =o. (8) 

s si 
a5 
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The solution of equation (6) with the initial and boundary 
conditions (8) can be obtained using Laplace transform 
methods as : 

For high values of 7 solution (9) reduces to : 

(10) 

Solution (10) coincides with the long-time solution 
obtained in ref. [6] for the single-phase model (no tem- 
perature difference between the fluid and solid phases). This 
solution is in the form of a shock wave propagating from the 
inlet boundary. 

According to equation (7) the function O,*is : 

W=${(i+z)exp[- (%)^I 

+(5-4exp [c- (sy]} +(w, -w,) 

X{~eXPr.erft[~]-~[exp{-(~)i) 

fexp ji- (zy}]]. (11) 

The function O$has a singularity at the point (t, r) = (0,O) 
caused by the thermal shock at the boundary % = 0 at the 
time 7 = 0. Therefore it can be applied to describe the tem- 
perature difference between the fluid and solid phases only 
outside the neighborhood of the point r = 0. 

For high values of z solution (11) reduces to : 

@*= 5(1-W2)+4-2wl+Wz) 
4zJ712 

exp[-(5)2]. (12) 

Solution (12) is in the form of a wave localized in space 
with amplitude decreasing while the wave propagates. 

Figure 1 depicts space-time distribution of the function 
-0: A maximum of the function -0: corresponds to the 
maximum temperature difference between the fluid and solid 
phases. 

Time dependence of the coordinate g of this maximum can 
be found analytically from the equation (0:); = 0. It is easy 

1.0 

0.5 

0 20 40 60 

5 
Fig. 1. Calculated wave of temperature difference between 
the solid and fluid phases as a function of time for 

c,pr = 0.2&p,, /2,, = 0.25&+ II = 0.25. 

to show that for_ high values of z this equation is satisfied 
by the function 5 = r. Substitution of this dependence into 
equation (12) leads to : 

In the dimensional variables that means that for high 
values of 2 : 

P=prc,vt 
c.Pc)efr ’ 

and the maximum temperature difference between the fluid 
and solid phases is : 

From formula (13) it follows that the main factors which 
influence (Tr- r,),,, are h,, a,, and v. 

Both of the waves described by equations (10) and (12) 
propagate with the rate : 

PfCf 
V=IIprc,+(l-II)p,c,U’ 

which for the case pFcl # p.c, does not coincide with the rate 
of incoming fluid v. 

(1) 

(2) 

(3) 

CONCLUSIONS 

The process of heating of a semi-infinite porous bed by 
a flow of high-temperature fluid introduces two quali- 
tatively different thermal waves : (a) the temperature of 
the fluid or the solid phases forms a shock wave; and 
(b) the temperature difference between the fluid and solid 
phases forms a thermal wave localized in space. 
The waves propagate from the inlet boundary with a 
rate which for the case of different heat capacities of fluid 
and solid does not coincide with the rate of the incoming 
fluid. 
The perturbations of the temperature difference between 
the solid and fluid phases tend to zero at infinity. 
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